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Abstract

As they are expected to occupy a large portion of the lattice, wiggler insertions
will introduce significant linear and nonlinear perturbations to the single-particle
dynamics in the NLC Main Dampig Rings (MDR). The nonlinearities are of
particular concern as a sufficiently large Dynamic Aperture (DA) is required for
high injection efficiency. The main content of this report is a study of the wigglers
impact on the DA of the NLC-MDR latest lattice design. The particle dynamics
is modelled by transfer maps calculated by integration through the wiggler fields.
For field representation we employed a 3D multipole expansion derived from the
field data that were obtained with the aid of a magnet design code. Additional
contents of this paper include an investigation of a simplified model of wiggler
consisting of a sequence of standard magnet elements (where thin octupoles are
used to represent the dominant nonlinearities) and the suggestion of a possible
correction scheme to compensate the wiggler nonlinearities.

∗Work supported by Department of Energy contract DE-AC03-76SF00098.



1 Introduction

In the damping rings of the next generation of linear colliders most radiation loss will take
place in the wiggler insertions rather than bending magnets. As they occupy a large portion
of the lattice, wigglers introduce significant linear and nonlinear perturbation to beam dy-
namics†. An accurate assessment of these effects is desirable in order to guarantee a proper
tuning of the linear lattice and determine the impact on the Dynamic Aperture (DA) - a
critical quantity because the large power carried by the circulating beams demands a very
high injection efficiency and places a severe constraint on allowable losses.

In the current design [1, 2] of the Next Linear Collider (NLC) Main Damping Ring (MDR)
lattice the total length of the wiggler insertions is 61.6 m out of a circumference of about
300 m - an increase of 15 m from the previous design. The change was needed to enlarge the
momentum compaction as a way to contain the effects of collective instabilities. As a larger
momentum compaction was achieved by longer bends with smaller magnetic field, additional
wigglers were required in order to compensate for the smaller radiation loss in the bendings
and preserve the desired damping.

A previous study [3, 4] showed that the effects of the wiggler nonlinearities in the earlier
design of the NLC MDR lattice while noticeable did not introduce unacceptable degradation
of the DA. The study made use of a suitable fitting of the magnetic field in the wiggler
midplane and a simplified symplectic integrator for tracking the orbits of individual particles.
A similar conclusion was reached after a first investigation of the new lattice [1] that was
carried out with the wigglers modelled as sequences of standard elements (combined function
dipoles, thin octupoles, and drifts). The parameters for these standard elements were tuned
in such a way as to reproduce the same horizontal and vertical kicks through a wiggler period
as obtained from the more accurate symplectic integrator technique employed earlier.

In this paper we report on a further study on the new lattice using a method that makes
some improvements on the field representation and avoids some of the simplifications in the
integrator mentioned above. The method was first introduced in [5] and originally applied to
study fringe-effects in superconducting quadrupoles but is sufficiently general to be extended
with few modifications to arbitrary magnetic devices. It makes use of one component of the
magnetic field defined on a surface surrounding the beam reference orbit and contained
within the aperture of the wiggler. Because of the Maxwell equations this information
is sufficient for determining the complete magnetic field within the entire aperture of the
device. Specification of the magnetic field could come from direct measurement or numerical
calculation done with the aid of one of the 3D codes that are customarily used in wiggler
design. As we shall see, this method has certain smoothing properties that make the field
reconstruction within the outer surface relatively insensitive to possible noise present in the
magnetic field data. For this reason, it is preferable to techniques that use magnetic field
data defined in the wiggler midplane.

If the reference orbit does not deviate much from a straight line a convenient choice
for the outer surface is that of a cylinder. Then, in cylindrical coordinates the magnetic

†While wigglers can also significantly affect the beam dynamics by exciting collective instabilities (through
emission of coherent synchrotron radiation), in this study we are only concerned with single-particle effects.
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field is best described in terms of a ”multipole” expansion, yielding a representation that is
particularly suitable for perturbative calculations of the beam dynamics. The relationship
between the coefficients of this expansion and the magnetic field data can be easily worked
out. Equipped with knowledge of the fields one can integrate the equations of motion for the
orbits of individual particles or, more efficiently, calculate the transfer map throughout the
entire device or portions of it, through the desired order. The transfer maps so calculated
can then be concatenated with those relative to the other machine elements to study the
lattice or preform tracking.

In the present study we used the code MaryLie [6] which has the built-in capability of
calculating transfer maps through arbitrary lattice devices upon specification of the corre-
sponding Hamiltonian. We implemented our method in an added-on user-defined routine
that reads in the magnetic field data from an external file and extracts the information re-
quired to evaluate the Hamiltonian. Because the calculation is carried out in a canonical
framework an intermediate step is devoted to determining the vector potential. We mostly
used the released 3.0 version of MaryLie, which allows for map calculations through 3rd

order (in the dynamical variable expressing deviation from the reference orbit).
The main result of this Paper - a calculation of the DA for the NLC MDR lattice in the

presence of wiggler - is reported in Sec. 10. The estimates of the DA we found are about
consistent with those from previous studies, which were obtained with different methods.
A degradation of the DA is observed but - at least for on-momentum particles - appears
to remain close to the targeted values of the machine acceptance (at injection the NLC
MDR’s should be capable of accommodating a beam with 150 mm-mrad normalized emit-
tance in both transverse planes and a full width ±1% energy spread). The DA degradation
off-momentum is of concern as well as the question of whether the calculated DA will be
preserved in longer term tracking. These are issues that will be the focus of our next inves-
tigations.

The rest of the paper is organized as follows. After reporting in Sec. 2 the formalism of
a 3D field multipole expansion for the scalar potential, magnetic fields and vector potential,
in Sec. 3 we work out the relationships between the magnetic field data and such a field
expansion. Sec. 4 contains an analysis of the magnetic field map for one period of the
NLC-MDR wigglers, based on an existing preliminary design for the insertions [7]. For
comparison we also report an analysis of the field data relative to one period of the wiggler
of the TESLA damping ring [8]. An outline of transfer map calculation is presented in Sec. 5,
while in Sec. 5.1 and 5.2 we discuss a simplified model of dynamics and give approximate
analytical expressions for the transverse kicks experienced by particles crossing a wiggler
period. The numerical evaluation of those kicks is then reported in Sec. 7. Finally, Section 8
is devoted to comparing the more accurate calculation of transfer maps discussed so far with
one in which the wigglers are modelled using standard elements (combined function dipoles,
octupoles), while in Sec. 9 we suggest a possible strategy for correcting the undesired wiggler
nonlinearities based on the results of Section 8.
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2 Multipole Expansion for the Scalar Potential and

Generalized Gradients

Although we are ultimately interested in the expression for the vector potential, the descrip-
tion of the magnetic field in a current-free region is most conveniently carried out in terms
of a scalar potential ψ, with B = ∇ψ,‡ obeying the Laplace equation:

∇2ψ = 0. (1)

We choose a cylindrical coordinate system and orient the z-axis along the longitudinal
axis of the wiggler. In this Paper we will neglect end effects and only consider the fields
over one wiggler period λw. The most general solution of (1) regular at the origin ρ = 0 and
periodic in z, can be expanded in terms of the eigenfunctions of the operator ∂2/∂φ2 as

ψ =
∞∑

m=0

ψm,s(ρ, z) sin mφ + ψm,c(ρ, z) cos mφ. (2)

where ψm,s and ψm,c have the following Fourier-series representation involving the modified
Bessel functions Im

ψm,s(ρ, z) =
∞∑

p=−∞
e2πipz/λwIm

(
2πp

λ
ρ
)

bm,p, (3)

ψm,c(ρ, z) =
∞∑

p=−∞
e2πipz/λwIm

(
2πp

λ
ρ
)

am,p, (4)

and am,p and bm,p are arbitrary coefficients.
Equation (2) is usually referred to in accelerator literature as a 3D ‘multipole expansion’.

The integer m is the order of the multipole. For example, m = 0 corresponds to a pure
solenoid, m = 1 to a dipole, m = 2 to a quadrupole, and so on. The solenoidal field
component is described by the component ψm=0,c, and ordinarily should not appear in the
field expansion for a wiggler. The ‘sin-like’ and ‘cos-like’ terms (2) correspond to the ‘normal’
and ‘skew’ components. Only normal components are contained in the fields of ideal error-
free planar wigglers (the ones of interest in this Paper). In contrast, the field representation
of helical wigglers would include skew components as well. In the following the formulae we
report will apply when only normal field components are present. The multipole expansion
can be easily converted into a power series in the radial variable ρ by using the Taylor
expansion for Im(x):

Im(x) =
∑

`=0

1

`!(` + m)!

(
x

2

)2`+m

. (5)

Upon insertion of the Taylor series (5) into the expressions (3) and (4), and inversion in
the order of the double summation we obtain the 3D multipole expansion in the form that
is usually reported in the literature

‡Notice our convention about the + sign in the definition of the scalar potential.
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ψm(ρ, z) =
∞∑

`=0

(−1)` m!

22``!(` + m)!
C [2`]

m (z)ρ2`+m, (6)

where (for m 6= 0) the functions C [2`]
m (z) are defined by

C [2`]
m (z) =

(−1)`

√
2π

1

2mm!

∞∑

p=−∞
e2πipz/λw

(
2πp

λw

)2`+m

bm,p. (7)

Observe that C [2`+2]
m (z) = d2

dz2 C
[2`]
m (z). That is, for each m the coefficients of the series

(6) can be obtained by successive differentiation of the functions Cm(z) ≡ C [0]
m (z). We will

refer to the functions Cm(z) as ‘generalized gradients’. The corresponding expressions for
the magnetic field in cylindrical coordinates (m 6= 0) are

Bρ =
∞∑

m=1

∞∑

`=0

(−1)` m!(2` + m)

22``!(` + m)!
C [2`]

m (z)ρ2`+m−1 sin mφ,

Bφ =
∞∑

m=1

∞∑

`=0

(−1)` m!

22``!(` + m)!
mC [2`]

m (z)ρ2`+m−1 cos mφ, (8)

Bz =
∞∑

m=1

∞∑

`=0

(−1)` m!

22``!(` + m)!
C [2`+1]

m (z)ρ2`+m sin mφ.

Having characterized the magnetic field in terms of the multipole expansion of the scalar
potential, we want to use the generalized gradients to determine the vector potential. A
possible way to proceed is to make an ansatz for the vector potential in the form

Aρ(ρ, φ, z) =
∑

m A(m)
ρ (ρ, z) cos mφ,

Aφ(ρ, φ, z) =
∑

m A
(m)
φ (ρ, z) cos mφ,

Az(ρ, φ, z) =
∑

m A(m)
z (ρ, z) cos mφ,

(9)

and use the relationship ∇ψ = ∇×A to determine the coefficients A(m)
ρ , A

(m)
φ , A(m)

z in terms

of ψm. For the Aφ = 0 choice of the gauge we have A
(m)
φ = 0 and

A(m)
z =

ρ

m

∂

∂ρ
ψm, A(m)

ρ = − ρ

m

∂

∂z
ψm, (10)

For an ideal (error-free) planar wiggler (in which only odd-number multipoles are present)
the vector-potential multipole expansion through 6th in ρ reads

Aρ =

(
ρ2C1 − ρ4

8
C

[3]
1 +

ρ6

192
C

[5]
1

)
cos φ +

(
ρ4

3
C

[1]
3 − ρ6

48
C

[3]
3

)
cos 3φ +

ρ6

5
C

[1]
5 cos 5φ, (11)

Az = −
(
ρC1 − 3ρ2

8
C

[2]
1 +

5ρ4

192
C

[4]
1

)
cos φ−

(
ρ3C3 − 5ρ5

48
C

[2]
3

)
cos 3φ− ρ5C5 cos 5φ.(12)
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3 Calculation of Generalized Gradients from Numeri-

cal Field Data

Knowledge of one component of the magnetic field on the surface of a cylinder is sufficient
to determine the entire field in the current-free region both inside and outside that surface.
Suppose the the radial component is known and given in terms of Fourier series in the
azimuthal angle (again we are assuming that only the normal components of the filed are
present)

Bρ(ρ = R, φ, z) =
∞∑

m=0

Bm(R, z) sin(mφ). (13)

First, we calculate Bρ = ∂
∂ρ

ψ at ρ = R from (2), (3) and then compare the resulting

expression with (13) to determine the coefficients bm,p

bm,p =
λw

2πp

B̃m,p

I ′m(2πpR/λw)
, (14)

where B̃m,p are the Fourier integrals of Bm(R, z)

B̃m,p =
1

λw

∫ λw

0
dze−i2πpz/λwBm(R, z), (15)

Finally, the expression (14) for bm,p can be inserted into the definition of the generalized
gradients (7) to yield

C [k]
m (z) =

1

2mm!

∞∑

p=−∞
ik

(2πp/λw)m+k−1

I ′m(2πpR/λw)
ei2πpz/λwB̃m,p. (16)

Because the Bessel functions Im(x) increase exponentially for large x they provide an
effective high-frequency filter in the evaluation of the generalized gradients (16). Their
presence has the favorable effect of softening the numerical noise possibly present in the
magnetic field data [5]. This low-pass filtering is enhanced by choosing a value for the radius
R (appearing in the argument of the Bessel function) as large as possible. It is this smoothing
property that makes the field representation advocated here preferable to the one that relies
on using magnetic field data from the wiggler mid-plane. In this other case errors in the
magnetic field data are not smoothened but are, in fact, magnified when one tries to evaluate
the fields away from the mid-plane.

4 Field Analysis for the NLC-MDR and Tesla Wiggler

In this Section we report the field analysis for one period of the NLC-MDR wiggler. For
comparison, we also show the corresponding analysis for the TESLA-DR. The field map we
use is based on the preliminary design for the wiggler insertions discussed in [7] - at present
there is no detailed design for the wiggler ends and the available field map extends only over
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Figure 1: Field harmonics for one-period of the NLC-MDR (at R = .9 cm) and TESLA-DR
(at R = 1 cm) wigglers.

a single period. Compared to TESLA, the NLC damping ring wigglers have shorter period
(λw = 27 cm vs. λw = 40 cm) and larger on-axis peak magnetic field (By0 = 2.1 T vs.
By0 = 1.68 T). The operating energy for the NLC-MDR and TESLA-DR are 1.98 GeV and
5 GeV respectively. The main parameters are summarized in Table 1.

We computed the radial component of the magnetic field on the surface of a cylinder
coaxial to the wigglers using the largest radius R that we could fit into the available set
of field data (R = 0.9 cm for NLC-MDR and R = 1 cm for TESLA). In addition to the
dominant dipole component, the Fourier analysis of Bρ with respect to the azimuthal angle
shows that there are significant sextupole and smaller higher-order odd-harmonics. In the
ideal error-free design considered here the presence of even harmonics (as well all that of
the skew components) is prevented by the anti-symmetry of the fields under rotation of 1800

around the axis. The profiles for the odd-harmonics Bm(R, z) through m = 5 are plotted
in Fig. 1. Their relationship to the 3D multipole expansion of Bρ through 5th order in R is
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Table 1: Relevant Parameters for Damping Rings and Wigglers.
NLC-MDR TESLA-DR

Energy 1.98 GeV 5 GeV
Rigidity (q/p0)

−1 6.604 Tm 16.66 Tm
Wiggler period λw 0.27 m 0.4 m

Wiggler peak field By0 2.1 T 1.68 T

expressed by

Bρ =

(
C1 − 3R2

8
C

[2]
1 +

5R4

192
C

[4]
1

)

︸ ︷︷ ︸
B1(R,z)

sin φ +

(
3C3R

2 − 5R4

16
C

[2]
3

)

︸ ︷︷ ︸
B3(R,z)

sin 3φ + 5C5R
4

︸ ︷︷ ︸
B5(R,z)

sin 5φ. (17)

Fig. 2 shows the values of the field harmonics averaged over half-period (Bm(R, z) have
vanishing average over one full wiggler period) and normalized with respect to the dominant
m = 1 (i.e. dipole) component. More specifically, the quantities plotted are bm/b1 with bm =∫ λw/2
0 Bm(R, z)dz. To make the comparison more meaningful in Fig. 2 the field harmonics

were calculated at the same R = 0.9 cm for both machines.
The azimuthal harmonics of Bρ(R, φ, z) evaluated on a grid of equally spaced intervals

along z are provided as input to a user-defined routine of MaryLie to determine the gen-
eralized gradients and hence the vector potential through 6th. The resulting profiles of the
generalized gradient C1(z) (equal to the on-axis verical component of the magnetic field)
and some selected derivatives are shown in Fig. 3, while the generalized gradients C3(z) and
C5(z) are shown in Fig. 4. The left columns are relative to the NLC-MDR and the right
column to the TESLA-DR wigglers.

In the next section we will show how these generalized gradients as they enter into the
Hamiltonian through the vector potential, can be used to evaluate transfer maps.

5 Hamiltonian and Equations of Motion for Maps

Neglecting radiation effects the motion of a single charged particle through a general magnetic
device of an accelerator can be described in a Hamiltonian framework. We choose a cartesian
coordinate frame, orient the z−axis along the wiggler longitudinal axis, and select z to be
the independent ”time-like” variable, while the physical time t and the total energy E are
promoted to the status of pair of canonical coordinates (t, pt = −E). The corresponding
Hamiltonian after a suitable scaling is

H(x, px, y, py, t, pt; z) = −
√√√√ p2

t

p2
0c

2
− m2c2

p2
0

− (px − q

p0

Ax)2 − (py − q

p0

Ay)2 − q

p0

Az (18)

where px and py are the transverse canonical momenta scaled with respect to the design
momentum p0. A reference orbit (xr, pr

x, y
r, pr

y, t
r, pr

t ) is a particular solution of the canonical
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Figure 2: Field azimuthal harmonics averaged over half-period expressed in units of the
leading dipole components. The dipole component is 2b1/λw = 1.453 T (NLC-MDR) and
2b1/λw = 1.020 T (TESLA-DR). In both cases the harmonics are evaluated at R = 0.9 cm.

equations generated by (18). In a wiggler the reference orbit should have the same periodicity
as the magnetic fields.

The non-vanishing terms of the Taylor expansion of the vector potential in cartesian
coordinates for an ideal (error-free) wiggler through 6th order

Ax = x2C
[1]
1 − 1

8
x4C

[3]
1 − 1

8
x2y2C

[3]
1 +

1

192
x6C

[5]
1 +

1

96
x4y2C

[5]
1 +

1

192
x2y4C

[5]
1 +

1

3
x4C

[1]
3

− x2y2C
[1]
3 − 1

48
x6C

[3]
3 +

1

24
x4y2C

[3]
3 +

1

16
x2y4C

[3]
3 +

1

5
x6C

[1]
5 − 2x4y2C

[1]
5 + x2y4C

[1]
5 ,

Ay = xyC
[1]
1 − 1

8
x3yC

[3]
1 − 1

8
xy3C

[3]
1 +

1

192
x5yC

[5]
1 +

1

96
x3y3C

[5]
1 +

1

192
xy5C

[5]
1 +

1

3
x3yC

[1]
3

− xy3C
[1]
3 − 1

48
x5yC

[3]
3 +

1

24
x3y3C

[3]
3 +

1

16
xy5C

[3]
3 +

1

5
x5yC

[1]
5 − 2x3y3C

[1]
5 + xy5C

[1]
5 ,

Az = −xC1 +
3

8
x3C

[2]
1 +

3

8
xy2C

[2]
1 − 5

192
x5C

[4]
1 − 5

96
x3y2C

[4]
1 − 5

192
xy4C

[4]
1 − x3C3

+ 3xy2C3 +
5

48
x5C

[2]
3 − 5

24
x3y2C

[2]
3 − 5

16
xy4C

[2]
3 − x5C5 + 10x3y2C5 − 5xy4C5.

In studying particle orbits we are typically interested in determining the dynamics with
respect to the reference orbit, that is, in terms of the deviation variables (X = x− xr, Px =
px−pr

x, Y = y−yr, Py = py−pr
y, T = t− tr, Pt = pt−pr

t ). In these variables the Hamiltonian
assumes the form

Hdev = −
[
(Pt + pr

t )
2 − m2c2

p2
0

− (PX + pr
x −

q

p0

Adev
x )2 − (PY + pr

y −
q

p0

Adev
y )2

] 1
2

−(q/p0)A
dev
z − ẋrPX + ṗr

xX − ẏrPY + ṗr
yY − Ṫ rPT + ṗr

T T, (19)
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Figure 3: Generalized gradient C1(z) and derivatives. C1 is equal to the the wiggler on-axis
magnetic field.
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Figure 4: Generalized gradients of 3rd (sextupole) and 5th (decapole) order.

with the vector potential Adev given by

Adev(X, Y, z) = A(X + xr, Y + yr, z), (20)

To clarify the meaning of the transverse canonical momenta PX and PY consider an
on-momentum particle in free-space (Ax = Ay = Az = 0). From the canonical equations

of motion it follows that dX/dz = PX/
√

1− P 2
X . By denoting with θx the angle between

the tangent of the particle orbit and the z−axis one realizes that PX = sin θx. Because
dX/dz ≡ X ′ = tan θx, we have X ′ ' PX through second order. The same conclusion applies
to PY .

The Hamiltonian (19) is particularly suitable for a perturbative calculation. We expand
Hdev = H2 +H3 + · · · in a Taylor series, where the terms H` are homogeneous polynomials of
degree ` in the deviation variables – by construction there is no H1– and solve the equations
of motion for the transfer maps, order by order, from entrance to exit of a wiggler period.
We do the calculation using the routine ‘genmap’ of the code MaryLie upon specification
of the generalized gradients C [k]

m . The generalized gradients are evaluated from (16) at the
points along z required in genmap by the Predictor-Corrector algorithm for map integration
with no interpolation needed.

In the Lie representation used by MaryLie a symplectic transfer map describing motion
around the reference orbit has the form

M = Me:f3:e:f4: · · · (21)
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where M is the 6× 6 matrix representing the linear part of the dynamics, while the f`’s are
homogeneous polynomial of degree ` in the dynamical variables. The matrix M depends
only on H2, the generator f3 on H3 and H2, f4 on H4, H3, and H2, and so on. In version
3.0 of MaryLie, the one employed here, the map (21) is truncated through generator f4.
For straight magnetic elements (in which the reference orbit follows the magnet axis) each
individual 2n−pole component of the magnetic field contributes only to the f` generator
with ` ≥ n (the main contribution is absorbed by the generator with ` = n while the
contribution to the generators with ` > n is related to the z-varying part of the generalized
gradient - a fringe effect). However, because in wigglers the reference orbit deviates from the
z−axis, expressing the field in the deviation coordinates (as opposed to the magnet frame
coordinates) produces a cascade of feed-down terms affecting the generators with ` < n
as well. For example, a sextupole component introduces a correction to the linear part
of the dynamics (one can think of this term as a quadrupole-like component); a decapole
component affects f4 (octupole-like), f3, (sextupole-like), etc. These feed-down terms are
weighted by increasing powers of the deviation xr(z) of the reference orbit from the wiggler
axis. For example, a 14-pole in the field expansion would entail a term in Az proportional
to x7 = (X−xr)7 = −(xr)7 +7x(xr)6− 21x2(xr)5 + · · ·. The first term on the RHS is a pure
function of z and has no dynamical significance. The second term would cause a correction
to the reference orbit, the third term would affect H2, the next term would modify H3, and
so on. Because for wigglers in high energy machines xr is fairly small (xr(z) ≤ 0.6 mm for the
NLC-MDR), in practice for each multipole component only the first feed-down term, which
is proportional to xr(z), is significant. For this reason not including higher order multipoles
above the decapole term in the field representation (as we do) does not affect the calculation
of the 3rd order map substantially.

The transfer map obtained by integration through the fields of one wiggler period for the
NLC-MDR is reported in Appendix A. In the following we will refer to it as the ”genamp”
transfer map.

The Lie form (21) is particularly efficient for map concatenation. The transfer maps
through one wiggler period can be combined together to obtain those for the entire devices,
and these combined with the transfer maps for the remaining lattice elements to yield the
one-turn map, to be used for linear and nonlinear lattice analysis. Transfer maps for the
individual elements (or collection of them) can be used to perform ray tracing as well. A nu-
merical analysis of the transverse kicks through one wiggler period will be reported in Sec. 6.
In the following we work out some simplified analytical expressions for those kicks – useful to
get a quick assessment of the dynamical role of the various terms in the field multipole expan-
sion. To this end first we need a simplified expression for the reference orbit. The motion of
the reference particle is confined to the y = 0 plane where Ay(x, y = 0, z) = 0 and described

by the reduced Hamiltonian Hx = −
[
1− (pr

x − (q/p0)Ax(xr, 0, z))2
] 1

2 − (q/p0)Az(xr, 0, z). If

we denote with Ĉ1 the primitive of the on-axis field C1 that has vanishing average over one
wiggler period

∫ λw
0 dzĈ1 = 0, the solution of the canonical equations generated by Hx is, to

the lowest order approximation

xr = − q

p0

∫ z

0
dz′Ĉ1(z

′), pr
x =

dxr

dz
= − q

p0

Ĉ1(z). (22)
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Figure 5: Reference orbits.

These expressions are fairly close to the reference orbit calculated using MaryLie3.0.
(Fig. 5). On the scale of Fig. 5 their plots would be indistinguishable from the curves shown
there.

5.1 Purely Horizontal kicks

Consider now the dynamics in the deviation variables of an on-momentum particle with
initial conditions in the horizontal plane. The reduced Hamiltonian is

Hx = −

1−

(
px + pr

x −
q

p0

Adev
x

)2



1
2

− q

p0

Adev
z − ẋrpx + ṗr

xx, (23)

where we have changed notation and used lower case variables x and px in place of X and
PX to denote deviations from the reference orbit.

To evaluate the transverse kicks it is convenient to introduce a canonical transformation
p̃x = px− (q/p0)A

dev
x , x̃ = x with generating function F2 = xp̃x +(q/p0)

∫
Adev

x dx, amounting
to a gauge transformation aimed at removing the x-component of the vector potential from
under the square root in (23). The transformed Hamiltonian is given by

H̃x = H+
∂F2

∂z
= −

√
1− (p̃x + pr

x)
2− q

p0

Adev
z −ẋr

(
p̃x +

q

p0

Adev
x

)
+ṗr

xx+
q

p0

∂

∂z

∫
Adev

x dx (24)
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The vector potential components Adev
x and Adev

z , evaluated in the plane y = 0 and through
4th order in x and first order in the reference orbit displacement xr, read

Adev
x =

(
2xxr + x2

)
C

[1]
1 +

(
4x3xr + x4

) (
1

3
C

[1]
3 − 1

8
C

[3]
1

)
, (25)

Adev
z = −xC1 −

(
3x2xr − x3

) (
C3 − 3

8
C

[2]
1

)

−
(
5x4xr − x5

) (
C5 − 5

48
C

[2]
3 +

5

192
C

[4]
1

)
. (26)

Under the simplifying assumption that the horizontal displacement x with respect to the
reference orbit remains about constant (in practice a good approximation) we obtain the
transverse kick through one wiggler-period

∆p̃x =
∫ λw

0

dp̃x

dz
dz = −

∫ λw

0

∂H̃

∂x
dz =

q

p0

∫ λw

0

(
∂Adev

z,2

∂x
+ ẋr ∂Adev

x,2

∂x

)
dz, (27)

where Adev
z,2 , Adev

x,2 denote the series (25),(26) with the exclusion of the terms linear in x (such
terms contribute only to the equations for the reference orbit - in Eq. (24) the linear parts of
−(q/p0)A

dev
z and −ẋr(q/p0)A

dev
x are cancelled by the term ṗr

xx). The last term on the RHS
of (24) does not contribute to the kick because of the periodicity of the vector potential and
reference orbit xr.

Because of the periodicity of Adev
x as a function of z, we recognize that the horizontal

kick through one wiggler-period is the same whether expressed in terms of the old or new
momentum coordinate, i.e. ∆p̃x = ∆px.

Next, upon inserting expressions (25) and (26) in the above equation (27) we obtain the
following estimate of linear component of and first nonlinear correction to the transverse
kick

∆px = x(∆px)1 + x3(∆px)3, (28)

where

(∆px)1 =
1

4

q

p0

∫ λw

0
xr(z)C

[2]
1 (z)dz − 6

q

p0

∫ λw

0
xr(z)C3(z)dz, (29)

(∆px)3 = − q

p0

∫ λw

0
xr(z)


C

[4]
1 (z)

48
− 3C

[2]
3 (z)

4
+ 20C5(z)


 dz. (30)

In (25) and (26) the terms not proportional to the displacement xr of the reference
orbit average to zero and in the present approximation do not contribute to the kicks. By
integrating by parts twice and making use of (22) the first term on the RHS of Eq. (29) can
be rewritten as − (q/p0)

2 ∫ λw
0 C2

1(z)dz/4. This term is always present § and carries a negative

§This term is present also in an idealized wiggler with infinite width. This is not inconsistent with the fact
that in this case there is no horizontal focusing, as feed-downs from higher order multipoles (see Appendix
C) will compensate the focusing effect of C1(z), causing (∆px)1 = 0, (∆px)3 = 0, etc.
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Table 2: Transverse Kicks for One Wiggler Period

NLC-MDR TESLA-DR

(∆px)1a = − (q/p0)
2 ∫ λw

0 C2
1dz/4 -0.00402 m−1 -0.00052 m−1

(∆px)1b = −6 (q/p0)
∫ λw
0 xrC3dz 0.00740 0.00172

(∆px)1 = (∆px)1a + (∆px)1b 0.00337 0.00120
(∆py)1 -0.0194 -0.00329

(∆px)3a = − (q/p0)
2 ∫ λw

0 xrC
[4]
1 dz/48 -0.214 m−3 -0.016 m−3

(∆px)3b = 3 (q/p0)
∫ λw
0 xrC

[2]
3 dz/4 0.561 0.060

(∆px)3c = −20 (q/p0)
∫ λw
0 xrC5dz -30.02 6.31

(∆px)3 = (∆px)3a + (∆px)3b + (∆px)3c -29.68 6.35
(∆py)3 -32.03 6.13

sign, indicating horizontal focusing. The second term on the RHS of Eq. (29) is a feed-down
from the azimuthal sextupole field component. The overall sign will depend on the relative
sign of and ratio between C1 and C3. From Table 2 we can see that the sign of (∆px)1

is positive in both the NLC-MDR and TESLA-DR wigglers. Feed-down from higher order
azimuthal harmonics would also contribute to linear focusing but their relative contributions
are of order (xr)2 or higher and are neglected here. As for the nonlinear correction (∆px)3,
Table 2 indicates that by and large the dominant component is that involving C5 (decapole
feed-down).

5.2 Purely Vertical Kicks

Similarly, way can evaluate vertical kicks for a particle entering a wiggler period in the x = 0
plane with a vertical offset y by use of the reduced Hamiltonian

Hy = −

1−

(
py − q

p0

Adev
y

)2



1
2

− q

p0

Adev
z , (31)

Once again, we remove the transverse component of the vector potential from under the
square root in (31) by a canonical transformation p̃y = py−(q/p0)A

dev
y , ỹ = y with generating

function F2 = yp̃y + (q/p0)
∫

Adev
y dy. The transformed Hamiltonian reads

H̃y = Hy +
∂F2

∂z
= −

√
1− p̃2

y −
q

p0

Adev
z +

q

p0

∂

∂z

∫
Adev

y dx. (32)

Assuming that the horizontal displacement y with respect to the reference orbit remains
constant the transverse kick reads

∆p̃y =
∫ λw

0

dp̃y

dz
dz =

q

p0

∫ λw

0

∂Adev
z

∂y
dz. (33)

As no dependance on the vertical component Adev
y is left in (33) after integration only the

expression for Adev
z need be reported. Through 4th order in y and first order in the reference

orbit displacement xr it is
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Adev
z = 3y2xr

(
C3 +

3

8
C

[2]
1

)
− 5y4xr

(
C5 +

1

16
C

[2]
3 +

1

192
C

[4]
1

)
. (34)

As before, the vertical kick is the same whether expressed in the old or new variables,
∆p̃y = ∆py. Specifically

∆py = y(∆py)1 + y3(∆py)3, (35)

with

(∆py)1 =
3

4

q

p0

∫ λw

0
xr(z)C

[2]
1 (z)dz + 6

q

p0

∫ λw

0
xr(z)C3(z)dz, (36)

(∆py)3 = − q

p0

∫ λw

0
xr(z)


5C

[4]
1 (z)

48
+

5C
[2]
3 (z)

4
+ 20C5(z)


 dz. (37)

In the absence of higher order azimuthal harmonics the coefficient of the linear part of the
vertical kick is negative i.e. a planar wiggler naturally provides focusing in both planes (sim-
ilarly to (29) the first term on the RHS of (36) can be written as −3 (q/p0)

2 ∫ λw
0 C2

1(z)dz/4).
Also, notice that the strength of this dipole-component induced focusing in the vertical plane
[first term on the RHS of (36)] is three times as large as in the horizontal plane.

6 Connection with the ’Dynamical Field Integral’

From Eq. (38) the expressions for the magnetic field through 4th order in cartesian coordinates
Bx = Bρ cos φ−Bφ sin φ, By = Bρ sin φ + Bφ cos φ read:

Bx = −
(

1

4
C

[2]
1 − 6C3

)
xy +

(
1

48
C

[4]
1 − 3

4
C

[2]
3 + 20C5

)
x3y +

(
1

48
C

[4]
1 − 1

4
C

[2]
3 − 20C5

)
xy3,

By = C1 −
(

1

8
C

[2]
1 − 3C3

)
x2 −

(
3

8
C

[2]
1 + 3C3

)
y2 +

(
1

192
C

[4]
1 − 3

16
C

[2]
3 + 5C5

)
x4,

+
(

1

32
C

[4]
1 − 3

8
C

[2]
3 − 30C5

)
x2y2 +

(
5

192
C

[4]
1 − 5

16
C

[2]
3 + 5C5

)
y4 (38)

Bz = yC
[1]
1 −

(
1

8
C

[3]
1 − 3C

[1]
3

)
x2y −

(
1

8
C

[3]
1 − C

[1]
3

)
y3.

The expression for By can be used to determine the ’dynamical field integral’ introduced
and discussed in Ref. [9], which reports on the experience gained from the wiggler insertion
BL11 in the SPEAR ring at SLAC. Because of poor design the nonlinearities introduced by
this insertion were found to cause unacceptable degradation of the beam lifetime. A suc-
cessful correction strategy was devised that required placing a combination of quadrupole,
octupole, and dodecapole magnet blocks (’magic fingers’) at the two wiggler ends to com-
pensate for both the linear and nonlinear perturbation to the dynamics. The strength of the
multipoles was set as to minimize the vertical magnetic field integrated over a particle orbit
x(z) in the wiggler midplane i.e. Iy =

∫
By (x(z), y = 0, z) dz (the ’dynamical field integral’).
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If one assumes that the particle orbit can be written as x = xr(z) + X, where xr is the
reference orbit and X remains constant across the wiggler, the quantity Iy turns out to be
proportional to the horizontal kick experienced by the particle. Not surprisingly, as this is
the same assumption that led to our simplified calculation of Sec. 5.1 one recovers through
order O(xr) an expression similar to Eq. (28)

Iy = X
∫ Lw

0
xr(z)

(
−1

4
C

[2]
1 (z)dz + 6xr(z)C3(z)dz

)

+ X3
∫ Lw

0
xr(z)


C

[4]
1 (z)

48
− 3C

[2]
3 (z)

4
+ 20C5(z)


 dz. (39)

In [9] it was correctly pointed out that minimizing Iy does not necessarily cause an
overall compensation of the wiggler perturbation to the beam dynamics. However, we should
observe that it may nevertheless result in softer nonlinearities in the vertical plane as well.
Indeed, this would be the case to the extent that the assumption leading to the simplified
calculation of Sec. 5.1 and 5.2 hold and the term in (39) proportional to C5 dominates over
those containing derivatives of the generalized gradients. Inspection of Eq.(37) shows that for
the vertical kick the term with C5 would also be dominant and automatically compensated
by an octupole magnet tuned to correct the horizontal nonlinearity. ¶

The same considerations would presumably also apply to a X5 nonlinearity (not shown in
Eq. (39)) dominated by the term C7 that would result from a 14-pole in the wiggler magnetic
field expansion. Correcting this nonlinearity would require a dodecapole magnet. It is in
our plans to investigate this point in the future by applying our analysis to a detailed field
map of the BL11 insertion.

7 Evaluation of the Transverse Kicks by Transfer Maps

In MaryLie tracking through a lattice element or lump of lattice elements can be carried
out using two options. The first is to express map (21) as a truncated Taylor series in
the dynamical variables (through 3rd order in version 3.0 of MaryLie). In general this
truncation is nonsymplectic. Alternatively, one can chose a second option amounting to
completing the truncated Taylor series with fictitious high order terms in such a way that
the completion is symplectic. There is a general consensus that long term tracking should
be done using a symplectic integrator, however, for single pass calculations, there is little
difference in the outcome between the two options (at least if the orbit amplitude in phase
space is not extreme).

Here we report the result of calculating the transverse kicks using the map through
one wiggler-period and the symplectic option for ray-tracing. The particles have initial
vanishing transverse canonical momenta. The horizontal (vertical) kicks are evaluated by

¶From [9], however, it is not clear whether the correction scheme adopted for the SPEAR BL11 insertion
while proving itself very effective in ameliorating the dynamics in the horizontal plane (the more critical for
machine performance) was found to be beneficial for the vertical motion as well.
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Figure 6: Horizontal (top row) and vertical kicks (bottom row) through one wiggler period.
Solid lines are from the simplified analytical expressions of Sec. 5.1 and 5.2. Dots are from
the MaryLie map calculation.

selecting initial positions in the horizonal y = 0 (vertical x = 0) plane. The results of the
MaryLie calculation are shown in Fig. 6 as dots. The solid lines represent an evaluation of
the transverse kicks according the simplified expressions of Sec. 5.1 and 5.2. As expected, for
small amplitudes, the outcomes from the MaryLie calculation and the simplified expressions
agree well. However, in the case of the NLC-MDR wiggler which suffers relatively larger kicks
the agreement is spoiled at larger amplitudes. As the field quality in the wigglers for the
two machines is comparable (see Fig. 2 the difference in the amplitude of the kicks is mostly
due to the difference in the rigidity (see Table 1). We recall that transverse kicks in wigglers
scale with the inverse of the square of the rigidity. This is in contrast to the scaling of the
transverse kicks in ordinary lattice elements, which are proportional to only the inverse of
the rigidity.

8 Modelling of one Wiggler Period Using Standard El-

ements

The values reported in Table 2 suggest that the leading nonlinearity in both the horizontal
and vertical planes come from feed-downs of the decapole term in the Az component of the
vector potential (terms proportional to C5). In contrast, feed-down contributions propor-
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BMU BMD

O

OΘ�2

Θ�2

Figure 7: Outline of the sequence of standard elements with bends and thin octupoles (black
bands) corresponding to (41). The reference orbit is indicated (sinusoidal-like curve) as well
as the transverse plane rotation by θ/2 at the two ends where θ is the bending angle through
a wiggler pole (see remark at the end of this Section).

tional to derivatives of C1(z) and C3(z), which appear in the Ax and Ay components of the
vector potential are relatively small. To the extent that in the Aφ = 0 gauge, which we have
used throughout, the contribution to the dynamics from Ax and Ay can be neglected and par-
ticle orbits do not deviate considerably from straight lines in the deviation variables - we can
conclude that through O(xr) and 3rd-order the wiggler nonlinearities would have the same
form as that of a standard octupole magnet. This can be easily seen: as the Az-component
of a decapole in the wiggler coordinate frame reads Az = −C5(x

5− 10x3y2 + 5xy4), in terms
of the deviation variables X = x− xr, Y = y we have

Az = −C5

(
(X + xr)5 − 10(X + xr)3Y 2 + 5(X + xr)Y 4

)

≡ −5C5x
r(X4 − 6X2Y 2 + Y 4) +O

(
(xr)2

)
(40)

As anticipated, the expression appearing the RHS has the same form as that of a standard
octupole field component. In the last line of the above equation we omitted the terms without
a dependence on xr, as they integrate to zero and in first approximation do not contribute
to the dynamics.

On the basis of these observations it seems reasonable to try to model the map of a wiggler
period by a suitable combination of standard elements, with inclusion of (thin) octupoles to
model the 3rd-order nonlinearities. In particular, we have considered the sequence (see also
Fig. 7)

Dλw/8 BPU O BPD Dλw/4 BMU O BMD Dλw/8, (41)

where Dλw/8, Dλw/4 represent drifts of length λw/8 and λw/4 (λw is the length of the wig-
gler period). BPU and BPD are combined-function bends with positive polarity, each one
modelling half a wiggler pole; BMU and BMD are combined-function bends with negative
polarity. Each half-pole has length λw/8. Two thin octupoles O are placed between the
half-bends.

While the dipole field, By0 = 2.277 T, is determined by the requirement set to achieve
the desired damping rate in the ring there remain two free parameters: the strength of the
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Figure 8: Horizontal (left) and vertical kicks (right) through one wiggler period calculated by
integration with GENMAP (dots) and using the standard element model (line). Particles
at entry have vanishing transverse momenta. These kicks are ”in-plane”, that is y = 0, when
calculating the horizontal kick, and x = 0 when calculating the vertical kick.

quadrupole component in the combined function bends and the strength of the octupole thin
lenses. We use these free parameters to force the transfer map corresponding to the sequence
(41) to be close in some way to the wiggler one-period transfer map that we computed by
integrating through the actual fields (see Appendix A).

We used the first parameter to fit the elements M43 of the linear part of the map and
the second to fit the : x4 : Lie generator against the corresponding matrix element and Lie
generator of the accurate map. The resulting field gradient in the combined function bend
is found to be -0.1665 T/m (defocusing in the horizontal plane), the strength of each of the
two thin octupoles 134.79 T/m2 (corresponding to K3L= 122.45 m−3 in MAD notation).‖

The map resulting from the fit is reported in Appendix B - comparison with the GEN-
MAP calculation (Appendix A) shows a reasonable agreement for its linear part. All the
corresponding matrix entries are within few percent or less, except for the entry M16 (and
M61) which shows a deviation of the order of 20% but is, however, very small. As for the
nonlinear generators some happen to be relatively close like the : y4 : generator (off by about
17%) while others, like the generator : x2y2 :, differ by a factor 2 or larger. Incidentally, the
first of these two generators dominates the nonlinear kick in the horizontal plane while the
second contributes to the x-y coupling. However, it is difficult to assess the dynamical effects
of the two maps just by inspection of the Lie-generators. More revealing is a comparison be-
tween the kicks obtained by application of the two maps, and ultimately, evaluation of their
impact on the DA of the ring lattice. We will present the DA study later in Sec. 10. Here we
show a graphical comparison (Figs. 8 and 9) between the kicks relative to one wiggler period
evaluated using the two different maps. The pictures show a reasonable good agreement
except for the off-plane vertical kicks with a finite horizontal displacement (picture to the
right in Fig. 9).

We end this Section with a technical remark. The map calculated using GENMAP

‖The MAD notation Kn for a multipole of order n (n = 1 quadrupole, n = 2 sextupole, etc.) is related
to the MaryLie notation Mn by Mn = KnBrho/n!, where Brho is the rigidity.
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Figure 9: Horizontal (left) and vertical kicks (right) through one wiggler period calculated by
integration with GENMAP (dots) and using the standard element model (line). Particles at
entry have vanishing transverse momenta. Kicks are ”off-plane”: in both case the horizontal
(x) and vertical (y) displacement of the particles at entry are related by y = x/5.

presupposes that the initial and final positions of the particle orbits lie on planes perpen-
dicular to the z-axis (the wiggler longitudinal axis). In contrast, when combining the maps
indicated by the sequence (41) it is understood that initial and final positions of the particle
orbits lie on a plane placed at an angle θ/2 with respect to the wiggler axis (dashed lines
in Fig. 7), where θ is the bending angle through one wiggler pole. In order to make a more
meaningful comparison one should precede and follow the application of the map (41) by
suitable rotations of the transverse plane. Such an action in MaryLie is carried out by the
command ‘prot’. Both these rotations were accounted for in the calculation leading to the
map reported in Appendix B and used to produce the pictures shown in this Section.

9 Compensating the Wiggler 3rd Order Nonlinearities

with Octupole Correctors.

Depending on the particular application and wiggler design it may be desirable or necessary
to correct for the nonlinear perturbations added to the beam dynamics. As already men-
tioned in Sec. 6 this was the case for the 1998 installation of the BL11 insertion in SPEAR.
The adopted correction scheme consisted in placing two sets of magnets in a quadrupole,
octupole, and dodecapole configuration aimed at cancelling the ’dynamical field integral’
shown in Sec 6. The results from the previous Section suggest an alternative and straight-
forward strategy. Suppose we are interested in correcting the 3rd-order nonlinearities – the
linear perturbation in principle can always be taken care of by adjusting the linear lattice
in the rest of the machine. Having calculated the map obtained by integrating through the
realistic wiggler fields (Sec. 5) and its best fit in terms of a sequence of standard magnets
(Sec. 8), one can set up octupole correctors that have strength opposite of those used to
construct the fitting map. Ideally, one would like to place the correctors in correspondence
of each wiggler poles. However, in a more realistic setting the correctors should be placed at
the insertion ends - at the cost of partially spoiling the compensation because of the particle
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Figure 10: Horizontal (left) and vertical (right) kicks through 6 wiggler periods with (solid
lines) and without (dashed line) octupole magnet correctors.

finite phase advance.
We tested the correction scheme by comparing the total horizontal and vertical kicks ob-

tained by 6 repeated applications of the one-period map and the kicks obtained by preceding
and following the same sequence with the application of the maps of two thin octupoles. This
sequence corresponds roughly to the body of the wiggler insertions to be used in the MDR
lattice. In this discussion we ignore the effects due to the insertion ends. The strength of
each of the two thin octupoles was set to be −6 × 2 × 134.79/2 = −808.74 T/m2, a value
resulting from the condition that the sum of the strength of the two correctors be opposite
of the integrated strength of the octupoles in the one-period fitting map discussed in Sec. 8.
Fig. 10 shows the horizontal and vertical kicks through 6 full wiggler periods with and with-
out correctors. The effectiveness of the correction is apparent form the improved linearity of
the shape of the curves. In the horizontal plane one can observe the presence of some residual
quadratic terms (sextupolar-like). The fact that the correction of the nonlinearities seems
to be slightly less effective in the vertical plane (inspection of the right picture in Fig. 10
shows a residual curvature in the line representing the kick) appears to depend to both the
fact that the correction was targeted to the horizontal plane∗∗ and that the perturbation to
the linear motion is stronger (and the resulting phase advance larger) in the vertical than in
the horizontal plane.

In the same way one can conceivably think of correcting 5th−order (and possibly higher)
nonlinearities provided that the main contribution to the corresponding kicks be caused by
feed-downs from the 14-pole term in the multipole expansion of Az (proportional to the
generalized gradient C7). We plan to investigate this point in the future by using version 5.0
of MaryLie.

Notice that a difference in the absolute values of linear focusing (in y) and defocusing
(in x) prevents simultaneous compensation of the linear part of the dynamics in both planes
by means of additional quadrupole magnet correctors. This is related to the fact that in
Eqs. (29) and (36) the terms to the left are not negligible compared to the terms on the

∗∗Recall that in Sec. 8 fitting of the thin octupoles in the sequence of standard elements model for the
wiggler period was done by selecting the Lie generator : x4 :.
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Table 3: Quadrupole setting for the matching of the wiggler insertions into the MDR lattice.
Quadrupole strength is K1 (MAD notation). Values in brackets indicate the corresponding
gradient.

Feb. 03 Design (m−2) Present Study (m−2)
QDW -1.21060 -0.79739 [-5.26646 T/m]
QFW 3.21384 2.60961 [17.23533 T/m]

Q1WM 4.08070 4.55004 [30.05107 T/m]
Q2WM -4.65844 -4.85085 [-32.0378 T/m]
Q3WM 3.17147 3.89201 [ 25.7051 T/m]
Q4WM -1.21710 -1.16545 [-7.69728 T/m]

right. Only the latter terms, coming from feed-downs in the sextupole components in the
Az-field expansion, display the azimuthal symmetry of the fields of a quadrupole magnet.

Finally we should point out that the tuning of any correction scheme based on the use of
standard multipole magnets is strictly dependent on the beam energy because - as already
pointed out - the wiggler nonlinearities scale with the inverse of the square of rigidity while
the kicks from standard magnet elements scale only with its inverse.

10 Dynamic Aperture for the NLC-MDR (Error-Free)

Lattice with Wigglers

The present NLC-MDR lattice design [1] includes 32 wiggler insertions equally divided be-
tween the ring two main straight sections and occupying about 62 m of the 300 m machine
circumference. Each wiggler insertion consists of 14 equally separated full poles and two
half-poles at the ends. The field configuration is such that a particle entering the insertion
on axis remains on axis at the exit. In [1] the wigglers were modelled using the same sequence
of standard magnet elements (combined function dipoles, octupoles) that we considered in
Sec. 8 but with a different choice for the magnet parameters. In the present study we used
the same lattice as in [1] with two exceptions: first of all, we replaced the standard elements
in the wiggler insertions spanning one wiggler period (two poles) with the one-period transfer
map calculated by integrating through a realistic representation of the fields (see Sec. 5). As
a complete design for the wiggler insertions including the ends and the corresponding field
map is unfortunately not available yet, we maintained a representation of the wiggler ends
in terms of standard elements (with the magnet parameters set as in Sec. 8). Each inser-
tion end consists of one half-pole and one full pole: the half-pole was modelled as a simple
combined function dipole; and the contiguous full pole (half-period) as a combined function
dipole with a thin sextupole in addition to a thin octupole.†† The need of an additional thin
sextupole results from the observation that over half a full wiggler period the contribution

††In summary, of the 7 full periods in each wiggler insertion 6 have been modelled using the accurate
maps of Sec. 5 and the remaining one (split into two halves placed at the two insertion ends) using standard
elements.
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Figure 11: Lattice functions in the straight sections containing the wiggler insertions. Wig-
glers modelled using standard elements. Calculation carried out with MAD.

to the dynamics from a sextupole term in the field expansion does not average to zero. The
integrated strength of this thin sextupole was chosen to correspond to the integral over half-
wiggler period

∫ λw/2
0 C3(z)dz = −7.78 T/m of the generalized sextupole gradient C3(z) as

determined in Sec. 4 with reversed sign at the two ends.
The second modification introduced in the lattice [1] consisted in changing the matching

of the two main straight sections into the linear lattice to account for the different linear prop-
erties of our wiggler model. The new configuration was achieved by tuning the quadrupoles
preceeding and trailing (Q1WM, Q2WM) or placed in between (Q3WM, Q4WM, QDW,
QFW) the wiggler insertions so as to leave the lattice in the rest of the machine and tunes
(Qx = 21.150, Qy = 10.347) unaffected (see Table 3). The matching was carried out with the
MAD [10] fitting routines. In so doing we represented the lattice using the standard-element
model of Sec. 8 not the realistic maps of Sec. 5 - this is reasonable as the linear parts of
the maps in the two cases are very close to each other. The lattice functions in the main
straight sections are shown in Fig. 11. As a check, in Fig. 12 we show the beta-functions
that result from replacing the standard-elements in the wiggler body with the realistic maps
and keeping the same matching scheme (plot made from MaryLie output). The change in
the lattice functions as well as in the machine tunes (Qx = 21.152, Qy = 10.349) is minimal.

For the present study we switched off the rf cavities and did not include any errors in the
magnets or wigglers - the combined effects of wiggler nonlinearities and systematic and ran-
dom lattice errors will be the subject of further investigations in the future. Radiation effects
were also neglected. Tracking was carried out element by element with MaryLie3.0 using
the symplectification of the corresponding 3rd-order maps. Symplectification in MaryLie
is done by the method of the generating functions, which requires solving some nonlinear
algebraic equations to determine the positions and momenta of a particle orbit at the exit
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Figure 13: On and off-momentum DA for the NLC-MDR, using the genmap transfer maps
for the wiggler periods through 500 machine turns. Orbits of particles touching the vacuum
chamber wall in the wiggler insertions are marked as unstable. The solid line corresponds to
a 15× σ transverse bunch size at injection, the dashed line to the transverse acceptance for
a linear lattice corresponding to the 8 mm radius vacuum chamber aperture in the wigglers.

of each lattice element for given positions and momenta at the entrance. In some cases -
typically in the presence of significant nonlinearities - the Newton method used to solve the
equations does not converge. We interpret this failure as an indication of the instability of
the corresponding orbit [6]. Tracking through the body of the wiggler insertions was done
by propagating the particle orbits through each individual period. When appropriate, the
MaryLie built-in modelling of fringe-field effects in the hard-edge limit was included in
the representation of the magnet elements for the rest of the lattice. In this lattice, how-
ever, fringe fields are a negligible source of nonlinearities - the main contribution to the
nonlinearities coming from the chromatic sextupoles and the wiggler insertions themselves.

The main result of this Section is represented by Fig. 13 showing the on and off-momentum
DA in the transverse plane located in the middle of the first quadrupole magnet downstream
the injection point (where βx = 16.0 m, βy = 1.58 m, αx = −0.57 and αy = 0.15). Particles
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were launched with vanishing transverse momenta and tracked through 500 turns. We kept
notice of the finite size of the circular cross section of the vacuum pipe in the wiggler inser-
tion region (with radius R = 8 mm) but not in the rest of the machine, where the radius
of the pipe is larger (R = 20 mm). Orbits of particles hitting the wall were marked as un-
stable. The corresponding transverse linear acceptance for the lattice is reported in Fig. 13
as a dashed line while the solid line indicates the 15σ beam size at injection - a plausible
DA target. Inspection of the figures shows that on-momentum a substantial portion of the
available linear acceptance is indeed stable while some degradation of the DA is observed
off-momentum.

The DA resulting when the presence of the vacuum chamber is not accounted for is
shown on the left column of Fig. 14. In the same figure, the pictures to the right show the
DA obtained by employing the standard-element model for the wiggler period. Comparison
with the corresponding pictures on the left column shows a reasonable good agreement in
the on-momentum case while off-momentum the standard-element model appears to gives a
somewhat more pessimistic estimate of the DA. The DA estimates in the two cases however
suggest that at least in preliminary calculations the use of the less refined model of wiggler
dynamics may be justified.

Finally an assessment of the relative impact of the two main sources of nonlinearities -
chromatic sextupoles and wigglers - can be obtained by comparison of the two pictures of
Fig. 15. The picture on the left shows the DA resulting from masking off the nonlinear part
of the wiggler transfer maps so that the chromatic sextupoles dominate. In contrast, the DA
in picture on the right was obtained by switching off the chromatic sextupoles leaving the
wiggler nonlinearities to dominate.

11 Conclusion

Wiggler insertions contribute a significant amount of nonlinearities to the NLC-MDR lattice
causing a reduction of the DA comparable to that produced by the chromatic sextupoles
alone. The wiggler nonlinearities are prevalently of third order and result mostly from feed-
down terms in the decapole component of the wiggler multipole field expansion. In turn,
feed-down terms from the sextupole field component result in perturbation to the linear part
of the dynamics. We determined the dynamical effects of the wigglers by integrating the
corresponding transfer maps through the actual fields. For field representation we used a 3D
multipole expansion derived from the field data obtained with the aid of a magnet design
code.

We have compared the accurate maps so calculated to those relative to a simplified model
of wiggler consisting of a sequence of standard magnet elements including thin octupoles to
represent the dominating nonlinearity. By an appropriate choice of the magnet parameters
we showed that the two mappings generate relatively close transverse kicks suggesting that
the use of the less accurate map may be reasonable in a first assessment of wiggler dynamical
effects.

Finally, we devised a possible compensation scheme for the wiggler nonlinearities con-
sisting in placing an octupole magnet at each wiggler end - the strength of the two magnets
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Figure 14: On and off-momentum Dynamic Aperture for the NLC-MDR, using wiggler
transfer maps calculated using GENMAP (figures on the left) and standard element model
(figures on the right). In this calculation the presence of vacuum-chamber wall is not ac-
counted for.

being based on the fitting of the standard element model against the accurate map calcu-
lated from the realistic fields. Evaluation of the transverse kicks through a compensated
insertion shows that the scheme is effective; however it remains to be determined whether
this compensation may indeed have a significant impact on the DA of the NLC-MDR.

Work carried out in collaboration with A. Wolski and funded by DOE contract DE-AC03-
76SF00098.
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12 Appendix A: Lie Map For One NLC-MDR Wiggler

Period - GENMAP Calculation.

Below we report the wiggler one-period transfer map (in Lie form) for the NLC-MDR Damp-
ing ring as calculated by the GENMAP routine of MaryLie3.0 starting from the magnetic
field data. The linear part of the map is reported first as a 6×6 matrix. The ordering of the
dynamical coordinates is x, px, y, py, τ, pτ . Following is the list of the of the generators for the
nonlinear part of the map. As for notation, f(30 00 00) refers to generator x3, f(21 00 00)
to generator x2px, etc. The index on the left is used internally by MaryLie for monomial
book-keeping (Giorgilli index).
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matrix for map is :

1.00046E+00 2.70086E-01 0.00000E+00 0.00000E+00 0.00000E+00 9.71516E-08
3.37075E-03 1.00046E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.66493E-10
0.00000E+00 0.00000E+00 9.97374E-01 2.69792E-01 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 -1.94441E-02 9.97374E-01 0.00000E+00 0.00000E+00
1.60955E-10 9.71509E-08 0.00000E+00 0.00000E+00 1.00000E+00 2.95397E-05
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

nonzero elements in generating polynomial are :

f( 28)=f( 30 00 00 )=-2.05438713099290E-03
f( 29)=f( 21 00 00 )= 1.2191736272439
f( 33)=f( 20 00 01 )= 1.68082035315380E-03
f( 34)=f( 12 00 00 )=-0.32913614569375
f( 38)=f( 11 00 01 )= 1.19500647637689E-06
f( 39)=f( 10 20 00 )= 1.84722086028322E-02
f( 40)=f( 10 11 00 )= 2.0751375008727
f( 43)=f( 10 02 00 )=-0.28065368212856
f( 48)=f( 10 00 02 )= 2.46405198744314E-10
f( 49)=f( 03 00 00 )= 3.04874328164547E-02
f( 53)=f( 02 00 01 )=-0.13506739929701
f( 54)=f( 01 20 00 )= 1.0358823246614
f( 55)=f( 01 11 00 )=-0.56044156015615
f( 58)=f( 01 02 00 )= 6.92114242109863E-02
f( 63)=f( 01 00 02 )=-2.41196416737200E-07
f( 67)=f( 00 20 01 )=-9.72620828719118E-03
f( 70)=f( 00 11 01 )=-1.82475745603723E-06
f( 76)=f( 00 02 01 )=-0.13504241356563
f( 83)=f( 00 00 03 )=-1.47718808462429E-05
f( 84)=f( 40 00 00 )= -10.229319297423
f( 85)=f( 31 00 00 )= 5.5249661224250
f( 89)=f( 30 00 01 )=-2.05737316245644E-03
f( 90)=f( 22 00 00 )= -1.3000647075270
f( 94)=f( 21 00 01 )= 1.2227198388800
f( 95)=f( 20 20 00 )= 32.621140233804
f( 96)=f( 20 11 00 )= -8.8079626057123
f( 99)=f( 20 02 00 )= 0.96147043624757
f(104)=f( 20 00 02 )= 1.67436358151190E-03
f(105)=f( 13 00 00 )= 0.14985505766427
f(109)=f( 12 00 01 )=-0.33017730792798
f(110)=f( 11 20 00 )= -8.7944794469442
f(111)=f( 11 11 00 )= 3.9199892653524
f(114)=f( 11 02 00 )=-0.46788275619052
f(119)=f( 11 00 02 )= 3.16513794572837E-06
f(123)=f( 10 20 01 )= 1.84050731398390E-02
f(126)=f( 10 11 01 )= 2.0678251020578
f(132)=f( 10 02 01 )=-0.27970654678607
f(139)=f( 10 00 03 )= 5.70944853141676E-10
f(140)=f( 04 00 00 )=-4.21008925399704E-02
f(144)=f( 03 00 01 )= 4.71172146159332E-02

29



f(145)=f( 02 20 00 )= 0.89029432028581
f(146)=f( 02 11 00 )=-0.45037981085105
f(149)=f( 02 02 00 )=-1.57545867199593E-02
f(154)=f( 02 00 02 )=-0.13513494172300
f(158)=f( 01 20 01 )= 1.0320632830752
f(161)=f( 01 11 01 )=-0.55793818739978
f(167)=f( 01 02 01 )= 9.37407227259764E-02
f(174)=f( 01 00 03 )=-4.33147038163901E-07
f(175)=f( 00 40 00 )= -11.790827821981
f(176)=f( 00 31 00 )= 6.3651643589086
f(179)=f( 00 22 00 )= -1.5634673669006
f(184)=f( 00 20 02 )=-9.71970637451124E-03
f(185)=f( 00 13 00 )= 0.18884867694934
f(190)=f( 00 11 02 )=-4.40817610493187E-06
f(195)=f( 00 04 00 )=-4.35094989263576E-02
f(200)=f( 00 02 02 )=-0.13508470054694
f(209)=f( 00 00 04 )=-1.47744198190652E-05

The quality of the numerical integration can be assessed by checking on the periodicity of
the reference orbit, through a wiggler period. The data below show that differences between
initial and final positions and angles is of the order of 10−9 (m and rad, respectively).

REFERENCE ORBIT DATA

At entrance:
x (m) = 0.000000000000000E+000

can. momentum p_x = 1.468079220094391E-002
mech. momentum p_x = 1.468079220094391E-002
angle phi_x (rad) = 1.468131960000000E-002

At exit:
x (m) = 1.055316107935701E-009

can. momentum p_x = 1.468078818635037E-002
mech. momentum p_x = 1.468078818635037E-002
angle phi_x (rad) = 1.468131558497376E-002

Bending angle (rad) = -4.015026238562980E-009

13 Appendix B: Lie Map For One NLC-MDR Wiggler

Period - Standard Elements

We report excerpts from the MaryLie input file used to perform the calculation of the
transfer map for one NLC-MDSR wiggler-period using standard elements. In MaryLie
combined function sector bends (with optional additional higher order multipoles) are set
up using the type code ’cfbd’. The map for rectangular bends can be obtained by combining
’cfbd’ with the ‘Body of a General Bending Magnet’ (gbdy), called with vanishing bending
angle but finite entry or exit angle. This is done in the lines ’bwpu’, ’bwpd’, ’bwmu’, ’bwmd’,
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defining the first halves and second halves of the wiggler poles with positive (’bwpu’, ’bwpd’)
and negative (’bwmu’, ’bwmd’) polarity. The same lines also include accounts for fringe
effects (type code ‘frng’) and a required rotation of the transverse planes (type cose ‘prot’).
In the code MAD [10] the same action is achieved by use of the physical element ’SBEND’
with appropriate setting of the entrance and exit angles for the magnet faces.

#beam
6.6045688
3873.7637
1.00000000000000
1.00000000000000

#menu
d2w drft ! Length of drift is lambdaw/4
0.0675

d2whlf drft ! Length of drift is d2w/2
0.03375

woct thlm ! Thin octupole
0 0 0 0 134.787 0

protw1 prot ! Rotation of transverse plane (at entrance of wiggler prd)
0.666632 1

protw2- prot ! Rotation of transverse plane (at exit of wiggler prd)
-0.666632 2

bwpuprt prot
0.666632 1
bwpufr1 frng
0.666632 0.018 0.0 2.27685 1 ! bd-angle, gap sizze, fld-intgr,B,in(1)/ex(2)
bwpuingb gbdy ! bd-angle, in-angl, out-angl, B
0 0.666632 0 2.27685
bwpucb cfbd
0.666632 2.27685 0 0 1 3
bwpups ps3 ! -0.1109567569 0 0 0 0 0
-0.16652 0 0 0 0 0

bwpdprt prot
0.666632 2
bwpdoutgb gbdy ! bd-angle, in-angl, out-angl, B
0 0 0.666632 2.27685
bwpdcb cfbd
0.666632 2.27685 0 0 1 3
bwpdps ps3 !
-0.16652 0 0 0 0 0
bwpdfr2 frng
0.666632 0.018 0.0 2.27685 2 ! bd-angle, gap sizze, fld-intgr, B,in(1)/ex(2)

bwmuprt prot
-0.666632 1
bwmufr1 frng
-0.666632 0.018 0.0 -2.27685 1 ! bd-angle, gap size, fld-intgr, B, in(1)/ex(2)
bwmuingb gbdy ! bd-angle, in-angl, out-angl, B
0 -0.666632 0 -2.27685
bwmucb cfbd
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-0.666632 -2.27685 0 0 1 3
bwmups ps3
-0.16652 0 0 0 0 0

bwmdprt prot
-0.666632 2
bwmdoutgb gbdy ! bd-angle, in-angl, out-angl, B
0 0 -0.666632 -2.27685
bwmdcb cfbd
-0.666632 -2.27685 0 0 1 3
bwmdps ps3 !
-0.16652 0 0 0 0 0
bwmdfr2 frng
-0.666632 0.018 0.0 -2.27685 2 ! bd-angle, gap sizze, fld-intgr, B, in(1)/ex(2)

#lines
bwpu ! up-stream half-bend with positive bend-angle
bwpuprt bwpufr1 bwpuingb bwpups bwpucb

bwpd ! down-stream half-bend with positive bend-angle
bwpdps bwpdcb bwpdoutgb bwpdfr2 bwpdprt

bwmu ! up-stream half-bend with negative bend-angle
bwmuprt bwmufr1 bwmuingb bwmups bwmucb

bwmd ! down-stream half-bend with negative bend-angle
bwmdps bwmdcb bwmdoutgb bwmdfr2 bwmdprt

bwp ! wiggler pole with positive bend angle and thin octupole
bwpu woct bwpd

bwm ! Wiggler pole with negative bend angle and thin octupole
bwmu woct bwmd

wigprd ! Map for wiggler period: genmap frame)
protw2- d2whlf bwp d2w bwm d2whlf protw1

#labor
wigprd

The commands ‘protw2-’ and ‘protw1’ in line ‘wigprd’ cause the rotation of the transverse
planes at both wiggler-period ends required for a proper comparison with the map calculated
using GENMAP and reported in Appendix A (see end of Section 8 for further comments
on this point). The transfer map written out in response to the ‘wigprd’ command under
#labor corresponding to a NLC-MDR one wiggler period reads:

matrix for map is :

1.00046E+00 2.70070E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.20325E-07
3.40404E-03 1.00046E+00 0.00000E+00 0.00000E+00 0.00000E+00 2.04749E-10
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0.00000E+00 0.00000E+00 9.97376E-01 2.69754E-01 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 -1.94326E-02 9.97376E-01 0.00000E+00 0.00000E+00
2.04749E-10 1.20325E-07 0.00000E+00 0.00000E+00 1.00000E+00 2.43859E-05
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

nonzero elements in generating polynomial are :

f( 28)=f( 30 00 00 )= 5.05678861701021E-08
f( 29)=f( 21 00 00 )=-2.97310321376835E-05
f( 33)=f( 20 00 01 )=-4.77399800909765E-07
f( 34)=f( 12 00 00 )= 8.02635311854781E-06
f( 38)=f( 11 00 01 )= 4.59782341313606E-04
f( 39)=f( 10 20 00 )=-1.64635584781963E-06
f( 40)=f( 10 11 00 )=-1.38027108546669E-04
f( 43)=f( 10 02 00 )= 2.40238060335417E-05
f( 48)=f( 10 00 02 )= 4.09624350058919E-10
f( 49)=f( 03 00 00 )=-8.38791410965890E-07
f( 53)=f( 02 00 01 )=-0.13509397189996
f( 54)=f( 01 20 00 )= 1.76433099074306E-04
f( 55)=f( 01 11 00 )=-9.00750112029660E-05
f( 58)=f( 01 02 00 )=-3.13666154900816E-03
f( 63)=f( 01 00 02 )=-2.40719038192144E-07
f( 67)=f( 00 20 01 )=-8.02747907582517E-03
f( 70)=f( 00 11 01 )=-4.58337972064577E-04
f( 76)=f( 00 02 01 )=-0.13495786239198
f( 83)=f( 00 00 03 )=-1.21939513062731E-05
f( 84)=f( 40 00 00 )= -10.209368709268
f( 85)=f( 31 00 00 )= 5.5141621205550
f( 89)=f( 30 00 01 )=-5.78127029741315E-06
f( 90)=f( 22 00 00 )= -1.3958594964358
f( 94)=f( 21 00 01 )= 4.84224087575559E-03
f( 95)=f( 20 20 00 )= 61.141659215930
f( 96)=f( 20 11 00 )= -16.511332528575
f( 99)=f( 20 02 00 )= 1.3940721611217
f(104)=f( 20 00 02 )=-2.17247492280703E-05
f(105)=f( 13 00 00 )= 0.17610414850026
f(109)=f( 12 00 01 )=-1.30712367374559E-03
f(110)=f( 11 20 00 )= -16.498746307302
f(111)=f( 11 11 00 )= 5.5711828001835
f(114)=f( 11 02 00 )=-0.52668050761575
f(119)=f( 11 00 02 )= 4.65782757334236E-04
f(123)=f( 10 20 01 )=-9.71124593912131E-05
f(126)=f( 10 11 01 )=-9.96662980618190E-03
f(132)=f( 10 02 01 )= 1.36386651273774E-03
f(139)=f( 10 00 03 )= 6.16244292868278E-10
f(140)=f( 04 00 00 )=-4.24851093382762E-02
f(144)=f( 03 00 01 )= 9.44878235051379E-05
f(145)=f( 02 20 00 )= 1.3714816322383
f(146)=f( 02 11 00 )=-0.52229761226595
f(149)=f( 02 02 00 )=-1.58645779384552E-02
f(154)=f( 02 00 02 )=-0.13517196677457
f(158)=f( 01 20 01 )=-4.29896700468791E-03
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f(161)=f( 01 11 01 )= 2.32643332415503E-03
f(167)=f( 01 02 01 )=-9.69421108684461E-03
f(174)=f( 01 00 03 )=-3.60642246724960E-07
f(175)=f( 00 40 00 )= -10.171160271687
f(176)=f( 00 31 00 )= 5.4892085828220
f(179)=f( 00 22 00 )= -1.3897626147178
f(184)=f( 00 20 02 )=-8.01005508215922E-03
f(185)=f( 00 13 00 )= 0.17392089191481
f(190)=f( 00 11 02 )=-4.62780515765339E-04
f(195)=f( 00 04 00 )=-4.22975129057471E-02
f(200)=f( 00 02 02 )=-0.13494403456622
f(209)=f( 00 00 04 )=-1.21953374890316E-05

14 Appendix C: Multipole Representation for an Ideal

Wiggler with Infinite Width

Because ideal wigglers with infinite width are often used in elementary discussions of beam
dynamics it may be of interest to report the 3D multipole representation for the corre-
sponding field configuration. Having denoted with x the direction along which the system
is translational invariant we have Bx = 0, while the other two components of the magnetic
field - having chosen a sinusoidal dependence along the z− axis - read

By = B0 cos
(

2π

λw

z
)

cosh
(

2π

λw

y
)

, (42)

Bz = −B0 sin
(

2π

λw

z
)

sinh
(

2π

λw

y
)

. (43)

The generalized gradients for this field can be easily determined upon writing the radial
component of the magnetic field

Bρ = By sin φ = B0 cos
(

2π

λw

)
cosh

(
2π

λw

ρ sin φ
)

sin φ. (44)

Expansion of (44) in power series of ρ (having set ξ = 2π/λw)

Bρ = B0 cos(ξz)

[ (
1 +

3

8
ρ2ξ2 +

5

192
ρ4ξ4 + ...

)
sin φ

−
(

1

8
ρ2ξ2 +

5

384
ρ4ξ4 + ...

)
sin(3φ) +

1

384
ρ4ξ4 sin 5(φ) + ...

]
(45)

and comparison with the general expression for the 3D multipole expansion of Bρ (first line
in Eq. 38) allow us to identify the generalized gradients as

Cm(z) = B0
(−1)(m−1)/2

m!2m−1

(
2π

λw

)m−1

cos
(

2π

λw

z
)

, (46)
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for odd m. For even m, Cm(z) = 0. Notice that while an infinite number of modes appear
in the spectrum of the 3D multipole expansion their magnitude decreases very rapidly with
the order m of the multipole.

Using the above equation it is easy to verify that for an infinitely wide wiggler the

combinations 1
4
C

[2]
1 (z)dz − 6C3(z) and

C
[4]
1 (z)

48
− 3C

[2]
3 (z)

4
+ 20C5(z) entering in the expressions

(29) and (30) for the horizontal kicks vanish (by inspection of Expression (38) one also
recognizes that this is equivalent to the property that the vertical component By of the
magnetic field have no roll-off in x). That is, in the variables expressing deviation from the
reference orbit the particle dynamic in the horizontal plane is that of a drift - as expected.
Notice that Eqs. (29) and (30) which in general are only approximately valid, are exact for
a infinitely wide wiggler.
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